Characteristics of series and parallel associations – EN Resolution

CHARACTERISTICS OF SERIES AND PARALLEL ASSOCIATIONS – RESOLUTION

Commented resolution of entrance exam exercises on

Characteristics of series and parallel associations

 01-  As they are identical, the voltage at the terminals of each of them is equal to half the voltage

Series and parallel associations

total — U 1 =U 2 =U’=252/2 — U’=126V — R=U’/i=126/2 —   R=63Ω

02-  R eq =100 + 100 + 200 — R eq =400Ω — R eq =U/I — 400=U/0.5 — U=200V — P=iU=0.5.200 — P=100W — or — P =R eq .i 2  400.0.25=100W —    R- E

03  Calculation of the current i, which is the same in both resistors — R eq = U/i — 110=220/i — i=2nd — in the 10Ω resistor — R=U/i — 10=U/2 —   R=20V

04-  Equivalent resistance of m resistors of electrical resistance R 1   — Req1 = mR 1   — idem — Req2 = nR 2   — Reqtotal = mR 1  + nR 2   — the current is the same in all resistors (series association) and is worth — Reqtotal = U / i — (mR 1  + nR 2 ) = U / i — i = U / (mR 1  + nR 2 ) —   R – A

05-  The total voltage is the sum of the voltages of each lamp — U t = nU l   — 117 = n.15 — n = 117/15 — n = 7.8 — as the voltage at the terminals of each lamp cannot exceed 15V, 8 lamps must be selected —   R- D

06-  Closing switch C causes a short circuit in the terminals of lamp A, the current diverts and it goes out. Thus, as the total resistance decreases, the current increases in lamp B, increasing its brightness —   R- A

07-  lamp — P=iU — 2.25=4.5.i — i=0.5A — as they are in series the current i is also 0.5A in the resistor — in the resistor — U=12 – 4.5=7.5V — R=U/i=7.5/0.5 — R=15 Ω —   R- E    

08- The lamps will have different electric currents, as they have different nominal values ​​— current in each lamp — i 100W = P/U=100/110=0.91A — i 60W =60/220=0.28A — The current in this series association cannot exceed 0.28A, as it would exceed the power of the lowest power lamp (60W) — when i=0.28A — P=iU — 100=0.28U — U=360V —   R- E 

09-  Current in the lamp — P=iU — 100=i.120 — i=5/6A — resistor — U=240 – 120=120V — P = iU=5/6.120 — 100W —   R- B

10-  U in each bulb — U=110/20=5.5V — i in each bulb — P=iU — 5=i.5.5 — i=1/1.1A — R=U/i=5.5/(1/1.1) —   R- 6.05Ω

11-  R eq =(R + 100)=U/i — R + 100=110/0.5 — R=120Ω —   R- C

12-  U network =U — U R =0.1U — U X =0.9U — i X =0.9U/X — i R =0.1U/R — series — i X =i R   — 0.9U/ X=0.1U/R — X=9R —   R- C

13-  I- Correct – 9 lamps – 90W + 1 5W lamp — P t = 95W — P of each lamp = 95/10 = 9.5W

II- Correct – 9 lamps – 90W + 1 12W lamp — P t = 102W — P of each lamp = 102/10 = 10.2W

A- A

14-  Power supplied by the battery — P b =iU=330.10 -3 .6 — P b =1.98W — as the LED consumes a power of 1.0W, there is a power of 1.98 – 1.0 left for the resistor R — P R =0.98W — P R =Ri 2   — 0.98=R.(330.10 -3 ) 2   — R=98.10 -2 /(33.10 -2 ) 2   — R=9.0Ω —  R- C

15-  Correct answer — circuit in figure III where you can turn on the lamp, independently, with any of the switches — observe the sequence below:

Series and parallel associations                         Series and parallel associations

16-  R- C — see previous exercise

17-  Calculation of the electric current i in the circuit that is in series — R eq = 2 + 5 + 8 + 5 — R eq = 20Ω — R eq = U/i — 20=100/i —

i=5A — power dissipated by R 3   — P=R 3 .i 2 =8.(5) 2   — P=200W — energy released by the immersed resistor — W=P.Δt — 

W=200.Δt (I) — energy required to transform 200g of ice at 0 o C into water at 20 o C — Q=mL + mcΔθ=200.80 + 200.1.(20 – 0)=16,000 + 4,000 — Q=20,000cal — 1cal=4J — Q=W=4,20,000 — W=80,000J (II) — equating II with I — 

200Δt=80,000 — Δt=400s — Δt=400s/60=6.7 —   Δt=6.7 minutes

18-  Note that R A , R H  and R P  are in series — the ideal voltmeter indicates U RA = 10V — 

Series and parallel associations

schematizing the circuit — as they are all in series, the current i is the same and is worth — U A = R A . i — 10=10 6 . i — i=10/10 6   — i=10 -5 A — U P =R P . i — U P =10 6 . 10 -5   — U P =10V — U total =U A  + U H  + U P   — 30=10 + U H  + 10 — U H =10V — U H =R H . i — 10=R H . 10 -5   — R H =10/10‑5  — R H =10 6 Ω — R H =1MΩ —   

A- A

19-  I- False — when one of the bulbs burns out, in the series circuit, the electric current is interrupted and the other bulb goes out.

II- False — as the lamps are identical, each one will be subject to a voltage of 110V and the power in each one will be 4 times lower, that is, 25W.

III- False — as the lamps are identical and each of them will be subject to a voltage of 110V, they will be within specifications and functioning normally.

IV- Correct — as they are identical, each of them will have half of the total voltage, which is 220V, that is, each one will be subject to a voltage of 110V.

R-B

20-  a)

Series and parallel associations

b) between R 1  and R 2   — R’ eq =240/3=80Ω — between R’ eq =80Ω and 80Ω — R eq =80/2 —  R eq =40Ω   — R eq =U/i — 40=120 /i —   i=3A  

c) R 1 =U/i 1   — 240=120/i 1   — i 1 =0.5A — R 2 =U/i 2   — 120=120/i 1   — i 1 =1.0A — R 3 =U /i 3   — 80=120/i 3   — i 3 =1.5A   

21- R eq =8/3Ω — R eq =U/i — 8/3=U/3 — U=8V — i 1 =8/4= 2A   — i 2 =8/8= 1A   —  R- D 

22- R- A   — see previous resolution 

23-  Calculation of ddp U in the 20Ω resistor — U=Ri=20.4 — U=80V — calculation of i in the 10Ω resistor — i=U/R=80/10= 8A   — calculation of R — R=U/i =80/16= Ω —  R- A

24-  Series — R 1  + R 2 =6 — R 1 =6 – R 2   — parallel — R 1 .R 2 /(R 1  + R 2 )=4/3 — (6 – R 2 ).R 2 =(6 – R 2  + R 2 ) — R 2  – 6R 2  + 8=0 — √Δ=2 — R 2 =(6 ± 2)/2 — R’ 2 =4Ω — R”=2Ω — when one is 2Ω, the other is 4Ω and vice versa —   R- C

25-  a) Yes, it is ohmic — the resistance is constant — R=U/i=0.6/0.2=1.8/0.6=3.0/1.0= 3.0Ω

b) P=U 2 /R=(9) 2 /3 — P=27W — W=P.Δt=27,300 — W=8,100J

c) Req1 =R/3 — Req2 = 3R — as P=U2 / Req    Req is  inversely proportional to P, since U is the same — the one that heats the water faster is the one with the greatest power and consequently the lowest Req    association   I

26-  a) The devices are connected in parallel and subjected to the same ddp of U=110V — P=iU — i=P/U — i heater =2,200/110=20A — i iron =770/110=7A — i lamp =100/110=0.91A —   iron and lamp

b) n=15/0.91=16.5 —   16 lamps

27-  R eq1 =R 1 .R 2 /(R 1  + R 2 ) — R eq1 =U/i — R 1 .R 2 /(R 1  + R 2 )=12/1 — R 1 .R 2 = 12(R 1  + R 2 ) (I) — R eq2 =R 2   — R eq2 =U/i — R 2 =12/0.4 —   R 2 =30Ω  (II) — (II) in (I) — R 1 .30=12(R 1  + 30) — 18R 1 =360 —   1 =20Ω

28-  All electrical devices in a residence are connected in parallel so that they are subject to the same potential difference — electric heater — W=P.Δt=200.1=200Wh — lamp — W=P.Δt=60.24=1,440W —   R- E

29-  Series — R eqs =10R — R eqs =U/i — 10R=120/0.05 — R=240Ω — parallel — R eqp =R/10 — R/10=U/i — 240/10=120 /i — i=5A —   R- A

30-  If the ddp at its terminals is constant, the lamps are connected in parallel — calculation of the current in each lamp — P=iU — 60=i.120 — i=0.5A — n=15/0.5= 30 lamps  

31-  R and the lamp are in parallel and both under ddp of 12V — lamp — P=iU — 6=i l .12 — i l =0.5A — R l =U/i=12/0.5   —   R l =24Ω — R eq =24R/(24 + R) — R eq =U/i — 24R/(24 + R)=12/3 — 20R=96 — R=4.8Ω — R- E

32-  Current in each lamp — R eq = U/i — 330=220/i — i=22/33 A — n=50/(22/33) —   n=75 lamps

33-  a) P=iU=6/11,110 —   P=60W

b) n=14/(6/11) —   n=25 lamps

34- The upper wire corresponds to one of the poles of the source and the lower one to the other — observe the figures carefully —   R- E 

35-  Note that points M, N, O, P, Q, R, S and T are short-circuited, so the 4 resistors are in

Series and parallel associations

parallel — R eq =U/i — R/4=U/i —   i=4U/R

36-  current in the lamp — P l =i l .U — 150=i l .110 — i l =214/15A — current in the iron — i f =(15 – 214/15) — i f =214/15A — P f =i f .U=214/15.110=1.570W —   R- B

37-  Shower — i c =P/U=3,000/110=27.27A — refrigerator — i g =400/110=3.63A — TV — i TV =150/110=1.36A — lamp — i l =60/110=0.54A — 30 missing – 27.7=2.3A —   R- Lamp and TV

38-

Series and parallel associations

P=U 2 /R eq   — P=U 2 /(2R/3) —   P=3U 2 /2R

39-  Total current i in the circuit breaker — P t =i t. U — (1,400 + 920)=i t .110 — i t =21.1A — for the circuit breaker not to trip, the minimum electric current must be 25 A —   R- D  

40-  Lamp Q — P Q =U 2 /R — P R =U 2 /R — P S =(U/2) 2 /R=U 2 /4R —   R- B

41  Data — U = 12.4 V — i = 0.8 A — R 1  = 0.2 Ω — r = 0.3 Ω — equivalent resistance of the association — U = Req .i — 12.4 = Req 0.8  — Req =12.4/0.8 — Req = 15.5 Ω — the resistance values ​​are in arithmetic progression (AP) — 

n  = a 1  + (n – 1) r — R n  = R 1  + (n – 1) r — R n  = 0.2 + (n – 1) 0.3 — R n  = 0.3 n – 0.1 — as the resistors are associated in series, the equivalent resistance is the sum of the resistances — sum of the first n terms of an AP — S n  = (a 1  + a n ).n/2 — R eq = (R 1  + R n ).n/2 — 15.5={0.2 + (0.3n – 1).n}/2 — 31=0.3n 2  + 0.1n — 3n 2  + n – 310=0 — solving the second-degree equation — n= (-1 ±√3.721)/6 — disregarding the negative answer — n= (-1 + 61)/6 — n=10 —   R- A

42-  (01) Correct — the electrical power is given by: P = U 2 /R, where   is the electrical resistance — as the voltage is the same for both bulbs, the one with greater power has less resistance, that is, R A  < B   — Ohm’s second law — R = ρL/S — in this expression,  ρ  is the resistivity of the material;   is the cross-sectional area of ​​the filament and   is its length — if both are made of the same material and have the same diameter, the resistance will be directly proportional to the length — R A  < B  and   

A  < B . 

(02) Correct — the luminous intensity is directly proportional to the luminous power emitted — luminous power of A — P’ A = 30% of 100 = 0.3(100) = 30 W — luminous power of B P’ B  = 30% of 40 = 0.3(40) = 12 W — P A ‘/P B ‘=30/12=2.5
(04) Correct — the resistivity of the filament increases with temperature — the brightness of a lamp is due to the heating of its filament to high temperatures — thus, when turned off, the lamps have lower resistivity, consequently, lower resistance.

(08) False — when they are connected in series, both are traversed by the same electric current — electrical power —  

d  = R 2   — as already concluded, R A  < B   — then P A  < P B   — the luminous intensity of A  is less than that of  B .  

(16) False — As already justified, R A  < B .   

R- (01+ 02 + 04) = 07

43-

Series and parallel associations

Series and parallel associations

44- I. Correct — in every series association the intensity of the electric current is the same. 

II. Calculation of the resistance, assumed constant, of each lamp — P 1 = U 2 /R 1   — 60=14,400/R 1   — R 1 =240Ω — P 2 = U 2 /R 2   — 

100=14,400/R 2   — R 2 =144Ω — equivalent resistor — R eq =240 + 144 — R eq =384Ω — electric current in each resistor —

Series and parallel associations

eq =U/i — 384=120/i — i=120/384 — i=0.3 A — calculation of the power dissipated in each lamp — P 1 =R 1 .i 2 =240.0.9 — P 1 =216W — P 2 =R 2 .i 2 =144.0.9 — P 2 =129.6W — lamp 1 shines brighter, since P 1 >P 2   — correct

III. False — see previous justification

45- The wrong statement is C — see sequence below — R eq = 0.72 + 1.44 + 1.44=3.6Ω — R eq = U/i — 3.6=6/i — i=1.66 A  

Series and parallel associations

R-C

46- I. False – In a series connection, the electric current that runs through the bulbs is the same. Therefore, when a bulb burns out, the circuit opens. 

II. False – In a series connection, the total ddp is divided between the two lamps. Therefore, they will have a ddp of 110V, not working as specified in the problem.

III. False – The total voltage is 220V. If we place two 110V bulbs in series, they will work correctly.

IV. True – As stated in statement II, each lamp will be subjected to a 110V ddp.

R-B

47- Data — R 1  = R and R 2  = 3R — equivalent resistance in series — R s  = R 1  + R 2 = R + 3 R — R s  = 4 R — where E is the force 

Series and parallel associations

electromotive force of the ideal battery, the power supplied by it in this association is — Ps=U 2 /R s =E 2 /R s   — P s =E 2 /4R (I) — equivalent resistance in parallel — when one is three times the other, divide the larger by 4 — R p =3R/4 — power supplied — P p =U 2 /R p =E 2 /R p   — P p =E 2 /(3R/4) — P p =4E 2 /3R (II) — dividing member by member (I) by (II) — Ps/P p =E 2 /4Rx3R/4E 2   — 

Ps/P p =3/16

48- The three resistors are in parallel, therefore ddp is the same for all three, that is, U = 24 V — resistor R   — P 3 = U 2 /R 3   —  

3 =24 2 /32 — R 3 =18Ω — calculation of R rq   — 1/R eq =1/3 + 1/9 + 1/18 — R eq =2Ω —  R- E

49- R eq =2,000/2 — R eq =1,000Ω — P=U 2 /R=100 2 /1,000 — P=10W —   R- D 

50- P=iU — i=55/36 A — when connected to the same fuse, the current doubles — I=2.(55/36) — I=3.05 A — to support this electric current, the lowest value of the fuse must be 5 A, that is, orange —   R- C 

51- Reversing the polarity of the battery only reverses the direction of the current without changing the other characteristics of the circuit — note in the expression P=U2 / R that the power is inversely proportional to the resistance of the lamp — thus, the lower the resistance of the filament, the greater the power and consequently the greater the brightness —   R-C 

52- The two resistors are in parallel — Req=100/3Ω — Req=U/i=E/i — 100/3=E/1 — E=100/3V —   R- B 

53-

Series and parallel associations

54- R- C   — see theory

55) – Calculation, using nominal values, of the current that must flow through each lamp — P=iU — 6=i.10 — i=0.6 A — in the parallel association, the total current of the fuse (currently circuit breaker) of 6 A,

Series and parallel associations

divides, passing 0.6 A through each lamp — n=6/0.6=10 lamps —   R- C .

56- Note in the figure that, as the 12V battery is connected to points A and B, the 5kΩ resistors

Series and parallel associations

and 7kΩ are in series and replaced by a single 12kΩ resistor — now the 12kΩ and 3kΩ resistors are in parallel and subjected to the same ddp as the battery of U=12V — i 2 =U/R=12/12k — i 2 =1mA — i 1 =U/R=12/3k — i 1 =4mA — i=i 1  + i 2 =1 + 4=5mA —   R- A

57- All must be connected in parallel, as they must be under the same ddp of U = 120V — calculation of each resistance — 3 lamps — P o = U 2 / R 1   — 300 = 14,400 / R 1   — R 1 = 14,400 / 300 — R 1 = 48Ω — sandwich plate — P o = U 2 / R 2   — 2,000 = 14,400 / R 2   — R 2 = 14,400 / 2,000 — R 2 = 7.2Ω — microwave oven — P o = U 2 / R 3   — 1,500 = 14,400 / R 3   — R 3 = 14,400 / 1,500 — R 2 = 9.6Ω — 

calculation of the equivalent resistance of these three resistors that are connected in parallel — 

Series and parallel associations

1/R eq =1/48 + 1/7.2 + 1/9.6 — 

1/R eq = (69.12 + 460.8 + 345.6)/3 317.76 — R eq ≈3.8Ω — R eq =U/i total   — 3.8=120/i total   — i total =31.6 A — any value less than 31.6 A turns off the circuit breaker —   R- E

58- See in the figure how the circuit should be assembled in a series association — in this association, so that the lamps

Series and parallel associations

work fully and efficiently, they must be connected within specifications (3V-9W) — so, each lamp must be carried by a current of P=iU — 9=3.i —   i=3 A   — the total voltage U=12V must be equal to the sum of the voltages of each lamp, so you will have  n=12V/3V=4 lamps   — resistance of each lamp — R=U/i=3/3=1Ω — equivalent resistance —   R eq =4×1=4Ω   — total power of the circuit — P t =U t .i=12.3 —   t =36W   —   R- A    

59- As these resistors have different intensities and are traversed by the same electric current, they are

Series and parallel associations

associated in series — equivalent resistance — R eq =4 + 2=6Ω — R eq =U/i — 6 = 12/i — i=2 A —   R- D .

Back to exercises